Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 15810, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737242

RESUMO

The Gila robusta species complex in the lower reaches of the Colorado River includes three nominal and contested species (G. robusta, G. intermedia, and G. nigra) originally defined by morphological and meristic characters. In subsequent investigations, none of these characters proved diagnostic, and species assignments were based on capture location. Two recent studies applied conservation genomics to assess species boundaries and reached contrasting conclusions: an ezRAD phylogenetic study resolved 5 lineages with poor alignment to species categories and proposed a single species with multiple population partitions. In contrast, a dd-RAD coalescent study concluded that the three nominal species are well-supported evolutionarily lineages. Here we developed a draft genome (~ 1.229 Gbp) to apply genome-wide coverage (10,246 SNPs) with nearly range-wide sampling of specimens (G. robusta N = 266, G. intermedia N = 241, and G. nigra N = 117) to resolve this debate. All three nominal species were polyphyletic, whereas 5 of 8 watersheds were monophyletic. AMOVA partitioned 23.1% of genetic variance among nominal species, 30.9% among watersheds, and the Little Colorado River was highly distinct (FST ranged from 0.79 to 0.88 across analyses). Likewise, DAPC identified watersheds as more distinct than species, with the Little Colorado River having 297 fixed nucleotide differences compared to zero fixed differences among the three nominal species. In every analysis, geography explains more of the observed variance than putative taxonomy, and there are no diagnostic molecular or morphological characters to justify species designation. Our analysis reconciles previous work by showing that species identities based on type location are supported by significant divergence, but natural geographic partitions show consistently greater divergence. Thus, our data confirm Gila robusta as a single polytypic species with roughly a dozen highly isolated geographic populations, providing a strong scientific basis for watershed-based future conservation.


Assuntos
Cyprinidae , Cipriniformes , Animais , Filogenia , Software , Genômica
2.
PeerJ ; 10: e13653, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873907

RESUMO

The global decline of coral reefs has driven considerable interest in active coral restoration. Despite their importance and dominance on mature reefs, relatively few coral restoration projects use slower growth forms like massive and encrusting coral species. Micro-fragmentation can increase coral cover by orders of magnitude faster than natural growth, which now allows cultivation of slow growing massive forms and shows promise and flexibility for active reef restoration. However, the major causes of variation in growth and survival of outplanted colonies remain poorly understood. Here, we report simple outplanting assays to aid in active reef restoration of slower growing species and increase the likelihood of restoration success. We used two different micro-fragmentation assays. Pyramid assays were used to examine variation associated with fragment size (ranging from ≈1-9 cm2), nursery residence time (for both in-situ and ex-situ nurseries), and 2D vs. 3D measurements of growth. Block assays were used to examine spatial variation among individual performance at outplanting sites in the field. We found 2D and 3D measurements correlated well, so measured survivorship and growth using top-down planar images for two of the main Hawaiian reef building corals, the plating Montipora capitata and the massive Porites compressa. Pyramid assays housed and outplanted from the in-situ nursery showed no effect of residence time or size on overall survivorship or growth for either species. Results from the ex-situ nursery, however, varied by species, with P. compressa again showing no effect of nursery residence time or size on survivorship or growth. In contrast, nursery culture resulted in improved survivorship of small M. capitata fragments, but net growth showed a weak positive effect of nursery time for medium fragments. Small fragments still suffered higher mortality than either medium or large fragments. Due to their lower mortality, medium fragments (≈3 cm2) appear to be the best compromise between growth and survivorship for outplanting. Likewise, given weak positive gains relative to the investment, our results suggest that it could be more cost-effective to simply outplant medium fragments as soon as possible, without intermediate culture in a nursery. Furthermore, the block assay revealed significant differences in survivorship and growth among sites for individuals of both species, emphasizing the importance of considering spatial variation in coral survival and growth following outplanting. These results highlight the value of using short-term micro-fragmentation assays prior to outplanting to assess size, and location specific performance, optimizing the efficiency of active reef restoration activities and maximizing the probability of success for active coral restoration projects.


Assuntos
Antozoários , Animais , Recifes de Corais , Havaí
3.
Methods Mol Biol ; 2498: 1-18, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35727537

RESUMO

Mitochondrial genomes (mtgenome) represent an important source of information for addressing fundamental evolutionary, phylogeographic, systematic, and ecological questions in marine organisms. In the last two decades the advent of high-throughput next-generation sequencing (NGS) has provided an unprecedented possibility to access large amount of genomic data and, as such, there has been a rapid growth in mtgenome resources and studies. In particular, NGS strategies represent a great advantage for investigating nonmodel marine organisms for which no or limited genomic resources are available. Here, we describe a routinely used standardized protocol to obtain mtgenome of nonmodel marine organisms by NGS. The protocol is composed of five main steps, including DNA extraction, DNA fragmentation, library preparation, high-throughput sequencing, and bioinformatic analyses. Each of the first three steps is followed by size/quality and concentration validations. The advantages of the described protocol rely on the assumption that no a priori information on mtgenome of the studied organism is needed and on its versatility as researchers may choose several kits for DNA extraction and library preparation and adopt different methods for DNA fragmentation depending on their needs, experience, and suppliers.


Assuntos
Genoma Mitocondrial , Animais , Biologia Computacional , DNA , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos
4.
DNA Res ; 28(4)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34387305

RESUMO

The crown-of-thorns starfish (COTS) is a coral predator that is widely distributed in Indo-Pacific Oceans. A previous phylogenetic study using partial mitochondrial sequences suggested that COTS had diverged into four distinct species, but a nuclear genome-based analysis to confirm this was not conducted. To address this, COTS species nuclear genome sequences were analysed here, sequencing Northern Indian Ocean (NIO) and Red Sea (RS) species genomes for the first time, followed by a comparative analysis with the Pacific Ocean (PO) species. Phylogenetic analysis and ADMIXTURE analysis revealed clear divergences between the three COTS species. Furthermore, within the PO species, the phylogenetic position of the Hawaiian sample was further away from the other Pacific-derived samples than expected based on the mitochondrial data, suggesting that it may be a PO subspecies. The pairwise sequentially Markovian coalescent model showed that the trajectories of the population size diverged by region during the Mid-Pleistocene transition when the sea-level was dramatically decreased, strongly suggesting that the three COTS species experienced allopatric speciation. Analysis of the orthologues indicated that there were remarkable genes with species-specific positive selection in the genomes of the PO and RS species, which suggested that there may be local adaptations in the COTS species.


Assuntos
Evolução Biológica , Genoma , Filogenia , Estrelas-do-Mar/genética , Animais , Genômica , Filogeografia , Análise de Sequência de DNA
5.
PeerJ ; 9: e10993, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33981486

RESUMO

Phylogenomic studies can provide insights into speciation, adaptation, and extinction, while providing a roadmap for conservation. Hawaiian tree snails are a model system for an adaptive radiation facing an extinction crisis. In the last 5 years, nearly all populations of Hawaiian tree snails across the 30 remaining species in the subfamily Achatinellinae (Achatinellidae) have declined from hundreds or thousands in the wild down to undetectable levels. Nearly 100 species historically occurred across dramatic environmental gradients on five of the Hawaiian Islands, but habitat loss, overcollection, and predation by invasive species have decimated populations. As such, this system offers the opportunity to integrate efforts to conserve evolutionary potential into conservation planning for a rapidly declining subfamily. Here, we used genome-wide, restriction-site associated DNA sequencing (RADseq), along with mitochondrial genome reconstruction, to resolve evolutionary relationships to inform conservation efforts. Phylogenetic analysis of nearly 400k genome-wide SNPs from 59 populations and 25 species across six genera in the family Achatinellidae, was generally concordant with taxonomy, geography, and mtDNA with several notable exceptions; mtDNA was unable to resolve some deeper nodes (e.g., the monophyly of Achatinella), while SNP data did not resolve as many shallow nodes. Both phylogenetic and coalescent analysis revealed deep divergences between populations within Achatinella mustelina that were consistent with species-level differences. Given cryptic species-level divergence within populations that are geographically proximate, they are at higher risk of extirpation from invasive predators and climate change than previously assumed. This study clarifies evolutionary relationships within this model system for adaptive radiation, forming the basis for conservation strategies such as translocation, captive rearing, and hybridization trials to prevent the loss of capacity to adapt to rapidly changing environmental conditions.

6.
Mol Phylogenet Evol ; 161: 107173, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33813021

RESUMO

The advent of high throughput sequencing technologies provides an opportunity to resolve phylogenetic relationships among closely related species. By incorporating hundreds to thousands of unlinked loci and single nucleotide polymorphisms (SNPs), phylogenomic analyses have a far greater potential to resolve species boundaries than approaches that rely on only a few markers. Scleractinian taxa have proved challenging to identify using traditional morphological approaches and many groups lack an adequate set of molecular markers to investigate their phylogenies. Here, we examine the potential of Restriction-site Associated DNA sequencing (RADseq) to investigate phylogenetic relationships and species limits within the scleractinian coral genus Porites. A total of 126 colonies were collected from 16 localities in the seas surrounding the Arabian Peninsula and ascribed to 12 nominal and two unknown species based on their morphology. Reference mapping was used to retrieve and compare nearly complete mitochondrial genomes, ribosomal DNA, and histone loci. De novo assembly and reference mapping to the P. lobata coral transcriptome were compared and used to obtain thousands of genome-wide loci and SNPs. A suite of species discovery methods (phylogenetic, ordination, and clustering analyses) and species delimitation approaches (coalescent-based, species tree, and Bayesian Factor delimitation) suggested the presence of eight molecular lineages, one of which included six morphospecies. Our phylogenomic approach provided a fully supported phylogeny of Porites from the Arabian Peninsula, suggesting the power of RADseq data to solve the species delineation problem in this speciose coral genus.


Assuntos
Antozoários/classificação , Antozoários/genética , Filogenia , Animais , Arábia , Teorema de Bayes , DNA Ribossômico , Genoma Mitocondrial , Análise de Sequência de DNA
7.
PeerJ ; 8: e10186, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33150082

RESUMO

Conservation genetic approaches for elasmobranchs have focused on regions of the mitochondrial genome or a handful of nuclear microsatellites. High-throughput sequencing offers a powerful alternative for examining population structure using many loci distributed across the nuclear and mitochondrial genomes. These single nucleotide polymorphisms are expected to provide finer scale and more accurate population level data; however, there have been few genomic studies applied to elasmobranch species. The desire to apply next-generation sequencing approaches is often tempered by the costs, which can be offset by pooling specimens prior to sequencing (pool-seq). In this study, we assess the utility of pool-seq by applying this method to the same individual silky sharks, Carcharhinus falciformis, previously surveyed with the mtDNA control region in the Atlantic and Indian Oceans. Pool-seq methods were able to recover the entire mitochondrial genome as well as thousands of nuclear markers. This volume of sequence data enabled the detection of population structure between regions of the Atlantic Ocean populations, undetected in the previous study (inter-Atlantic mitochondrial SNPs FST values comparison ranging from 0.029 to 0.135 and nuclear SNPs from 0.015 to 0.025). Our results reinforce the conclusion that sampling the mitochondrial control region alone may fail to detect fine-scale population structure, and additional sampling across the genome may increase resolution for some species. Additionally, this study shows that the costs of analyzing 4,988 loci using pool-seq methods are equivalent to the standard Sanger-sequenced markers and become less expensive when large numbers of individuals (>300) are analyzed.

8.
Microbiome ; 8(1): 123, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32831146

RESUMO

BACKGROUND: Population outbreaks of the crown-of-thorns starfish (Acanthaster planci sensu lato; COTS), a primary predator of reef-building corals in the Indo-Pacific Ocean, are a major threat to coral reefs. While biological and ecological knowledge of COTS has been accumulating since the 1960s, little is known about its associated bacteria. The aim of this study was to provide fundamental information on the dominant COTS-associated bacteria through a multifaceted molecular approach. METHODS: A total of 205 COTS individuals from 17 locations throughout the Indo-Pacific Ocean were examined for the presence of COTS-associated bacteria. We conducted 16S rRNA metabarcoding of COTS to determine the bacterial profiles of different parts of the body and generated a full-length 16S rRNA gene sequence from a single dominant bacterium, which we designated COTS27. We performed phylogenetic analysis to determine the taxonomy, screening of COTS27 across the Indo-Pacific, FISH to visualize it within the COTS tissues, and reconstruction of the bacterial genome from the hologenome sequence data. RESULTS: We discovered that a single bacterium exists at high densities in the subcuticular space in COTS forming a biofilm-like structure between the cuticle and the epidermis. COTS27 belongs to a clade that presumably represents a distinct order (so-called marine spirochetes) in the phylum Spirochaetes and is universally present in COTS throughout the Indo-Pacific Ocean. The reconstructed genome of COTS27 includes some genetic traits that are probably linked to adaptation to marine environments and evolution as an extracellular endosymbiont in subcuticular spaces. CONCLUSIONS: COTS27 can be found in three allopatric COTS species, ranging from the northern Red Sea to the Pacific, implying that the symbiotic relationship arose before the speciation events (approximately 2 million years ago). The universal association of COTS27 with COTS and nearly mono-specific association at least with the Indo-Pacific COTS provides a useful model system for studying symbiont-host interactions in marine invertebrates and may have applications for coral reef conservation. Video Abstract.


Assuntos
Antozoários , Bactérias/isolamento & purificação , Comportamento Predatório , Estrelas-do-Mar/microbiologia , Estrelas-do-Mar/fisiologia , Simbiose , Animais , Bactérias/genética , Recifes de Corais , Oceano Índico , Masculino , Oceano Pacífico , Filogenia , RNA Ribossômico 16S/genética , Estrelas-do-Mar/genética
9.
PeerJ ; 8: e8633, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32211227

RESUMO

Atlantia is described as a new genus pertaining to the family Dendrophylliidae (Anthozoa, Scleractinia) based on specimens from Cape Verde, eastern Atlantic. This taxon was first recognized as Enallopsammia micranthus and later described as a new species, Tubastraea caboverdiana, which then changed the status of the genus Tubastraea as native to the Atlantic Ocean. Here, based on morphological and molecular analyses, we compare fresh material of T. caboverdiana to other dendrophylliid genera and describe it as a new genus named Atlantia in order to better accommodate this species. Evolutionary reconstruction based on two mitochondrial and one nuclear marker for 67 dendrophylliids and one poritid species recovered A. caboverdiana as an isolated clade not related to Tubastraea and more closely related to Dendrophyllia cornigera and Leptopsammia pruvoti. Atlantia differs from Tubastraea by having a phaceloid to dendroid growth form with new corallites budding at an acute angle from the theca of a parent corallite. The genus also has normally arranged septa (not Portualès Plan), poorly developed columella, and a shallow-water distribution all supporting the classification as a new genus. Our results corroborate the monophyly of the genus Tubastraea and reiterate the Atlantic non-indigenous status for the genus. In the light of the results presented herein, we recommend an extensive review of shallow-water dendrophylliids from the Eastern Atlantic.

10.
PeerJ ; 8: e8550, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32110487

RESUMO

We examined genetic structure in the lobe coral Porites lobata among pairs of highly variable and high-stress nearshore sites and adjacent less variable and less impacted offshore sites on the islands of Oahu and Maui, Hawaii. Using an analysis of molecular variance framework, we tested whether populations were more structured by geographic distance or environmental extremes. The genetic patterns we observed followed isolation by environment, where nearshore and adjacent offshore populations showed significant genetic structure at both locations (AMOVA F ST = 0.04∼0.19, P < 0.001), but no significant isolation by distance between islands. Strikingly, corals from the two nearshore sites with higher levels of environmental stressors on different islands over 100 km apart with similar environmentally stressful conditions were genetically closer (FST = 0.0, P = 0.73) than those within a single location less than 2 km apart (FST = 0.04∼0.08, P < 0.01). In contrast, a third site with a less impacted nearshore site (i.e., less pronounced environmental gradient) showed no significant structure from the offshore comparison. Our results show much stronger support for environment than distance separating these populations. Our finding suggests that ecological boundaries from human impacts may play a role in forming genetic structure in the coastal environment, and that genetic divergence in the absence of geographical barriers to gene flow might be explained by selective pressure across contrasting habitats.

11.
J Hered ; 111(1): 70-83, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31943081

RESUMO

Species flocks are proliferations of closely-related species, usually after colonization of depauperate habitat. These radiations are abundant on oceanic islands and in ancient freshwater lakes, but rare in marine habitats. This contrast is well documented in the Hawaiian Archipelago, where terrestrial examples include the speciose silverswords (sunflower family Asteraceae), Drosophila fruit flies, and honeycreepers (passerine birds), all derived from one or a few ancestral lineages. The marine fauna of Hawai'i is also the product of rare colonization events, but these colonizations usually yield only one species. Dispersal ability is key to understanding this evolutionary inequity. While terrestrial fauna rarely colonize between oceanic islands, marine fauna with pelagic larvae can make this leap in every generation. An informative exception is the marine fauna that lack a pelagic larval stage. These low-dispersal species emulate a "terrestrial" mode of reproduction (brooding, viviparity, crawl-away larvae), yielding marine species flocks in scattered locations around the world. Elsewhere, aquatic species flocks are concentrated in specific geographic settings, including the ancient lakes of Baikal (Siberia) and Tanganyika (eastern Africa), and Antarctica. These locations host multiple species flocks across a broad taxonomic spectrum, indicating a unifying evolutionary phenomenon. Hence marine species flocks can be singular cases that arise due to restricted dispersal or other intrinsic features, or they can be geographically clustered, promoted by extrinsic ecological circumstances. Here, we review and contrast intrinsic cases of species flocks in individual taxa, and extrinsic cases of geological/ecological opportunity, to elucidate the processes of species radiations.


Assuntos
Especiação Genética , Filogeografia , Animais , Regiões Antárticas , Organismos Aquáticos , Peixes , Água Doce , Havaí , Invertebrados , Plantas
12.
HardwareX ; 7: e00089, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35495208

RESUMO

The study and conservation of biological communities, such as coral reefs, frequently requires repeated surveys to measure the growth of organisms or the occurrence of ecological processes, such as recruitment, predation, competition, or mortality. In the case of coral reefs, processes influencing coral community structure occur on time scales of days (recruitment, predation), months (seasonal environmental stress), or years (competition for space). In both marine and terrestrial systems, observing the ecology of remote locations at fine temporal scales is made difficult by the high cost or complexity of resurveying the same location at high frequency. These restrictions have produced limited understanding of in-situ ecological processes which occur at fine temporal scales and influence community structure but are easily missed during infrequent surveys. We present a low-cost method for the conversion of consumer cameras into programmable time-lapse platforms, allowing scheduled daily video or photo capture in remote locations for extended time periods. Results of a 1-month deployment with twice-daily photo capture are presented. Total cost to construct and deploy CoralCam in-situ (up to 45 m) is approximately $80 USD, providing a low-cost platform for fine scale data collection where these data are not otherwise logistically or financially possible.

13.
BMC Evol Biol ; 19(1): 187, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31615417

RESUMO

BACKGROUND: Heliopora coerulea, the blue coral, is the octocoral characterized by its blue skeleton. Recently, two Heliopora species were delimited by DNA markers: HC-A and HC-B. To clarify the genomic divergence of these Heliopora species (HC-A and HC-B) from sympatric and allopatric populations in Okinawa, Japan, we used a high throughput reduced representation genomic DNA sequencing approach (ezRAD). RESULTS: We found 6742 biallelic SNPs shared among all target populations, which successfully distinguished the HC-A and HC-B species in both the sympatric and allopatric populations, with no evidence of hybridization between the two. In addition, we detected 410 fixed SNPs linking functional gene differences, including heat resilience and reproductive timing, between HC-A and HC-B. CONCLUSIONS: We confirmed clear genomic divergence between Heliopora species and found possible genes related to stress-responses and reproduction, which may shed light on the speciation process and ecological divergence of coral species.


Assuntos
Antozoários/genética , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Animais , Estudos de Associação Genética , Loci Gênicos , Genética Populacional , Geografia , Hibridização Genética , Japão , Filogenia , Especificidade da Espécie , Simpatria/genética
14.
BMC Evol Biol ; 19(1): 153, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31340762

RESUMO

BACKGROUND: Evolutionary patterns of scleractinian (stony) corals are difficult to infer given the existence of few diagnostic characters and pervasive phenotypic plasticity. A previous study of Hawaiian Montipora (Scleractinia: Acroporidae) based on five partial mitochondrial and two nuclear genes revealed the existence of a species complex, grouping one of the rarest known species (M. dilatata, which is listed as Endangered by the International Union for Conservation of Nature - IUCN) with widespread corals of very different colony growth forms (M. flabellata and M. cf. turgescens). These previous results could result from a lack of resolution due to a limited number of markers, compositional heterogeneity or reflect biological processes such as incomplete lineage sorting (ILS) or introgression. RESULTS: All 13 mitochondrial protein-coding genes from 55 scleractinians (14 lineages from this study) were used to evaluate if a recent origin of the M. dilatata species complex or rate heterogeneity could be compromising phylogenetic inference. Rate heterogeneity detected in the mitochondrial data set seems to have no significant impacts on the phylogenies but clearly affects age estimates. Dating analyses show different estimations for the speciation of M. dilatata species complex depending on whether taking compositional heterogeneity into account (0.8 [0.05-2.6] Myr) or assuming rate homogeneity (0.4 [0.14-0.75] Myr). Genomic data also provided evidence of introgression among all analysed samples of the complex. RADseq data indicated that M. capitata colour morphs may have a genetic basis. CONCLUSIONS: Despite the volume of data (over 60,000 SNPs), phylogenetic relationships within the M. dilatata species complex remain unresolved most likely due to a recent origin and ongoing introgression. Species delimitation with genomic data is not concordant with the current taxonomy, which does not reflect the true diversity of this group. Nominal species within the complex are either undergoing a speciation process or represent ecomorphs exhibiting phenotypic polymorphisms.


Assuntos
Antozoários/genética , Genoma , Animais , Teorema de Bayes , Calibragem , Genoma Mitocondrial , Havaí , Funções Verossimilhança , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Fatores de Tempo
15.
PeerJ ; 6: e5605, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30294509

RESUMO

The Gila robusta species complex in the Lower Colorado River Basin has a complicated taxonomic history. Recent authors have separated this group into three nominal taxa, G. robusta, G. intermedia, and G. nigra, however aside from location, no reliable method of distinguishing individuals of these species currently exists. To assess relationships within this group, we examined morphology of type specimens and fresh material, and used RADseq methods to assess phylogenetic relationship among these nominal species. Maximum likelihood and Bayesian inference tree building methods reveal high concordance between tree topologies based on the mitochondrial and nuclear datasets. Coalescent SNAPP analysis resolved a similar tree topology. Neither morphological nor molecular data reveal diagnostic differences between these species as currently defined. As such, G. intermedia and G. nigra should be considered synonyms of the senior G. robusta. We hypothesize that climate driven wet and dry cycles have led to periodic isolation of population subunits and subsequent local divergence followed by reestablished connectivity and mixing. Management plans should therefore focus on retaining genetic variability and viability of geographic populations to preserve adaptability to changing climate conditions.

16.
PeerJ ; 6: e4355, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29441239

RESUMO

Species within the scleractinian genus Pocillopora Lamarck 1816 exhibit extreme phenotypic plasticity, making identification based on morphology difficult. However, the mitochondrial open reading frame (mtORF) marker provides a useful genetic tool for identification of most species in this genus, with a notable exception of P. eydouxi and P. meandrina. Based on recent genomic work, we present a quick and simple, gel-based restriction fragment length polymorphism (RFLP) method for the identification of all six Pocillopora species occurring in Hawai'i by amplifying either the mtORF region, a newly discovered histone region, or both, and then using the restriction enzymes targeting diagnostic sequences we unambiguously identify each species. Using this approach, we documented frequent misidentification of Pocillopora species based on colony morphology. We found that P. acuta colonies are frequently mistakenly identified as P. damicornis in Kane'ohe Bay, O'ahu. We also found that P. meandrina likely has a northern range limit in the Northwest Hawaiian Islands, above which P. ligulata was regularly mistaken for P. meandrina.

17.
Mitochondrial DNA B Resour ; 3(1): 173-174, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33474108

RESUMO

Corals in the genus Porites are among the major framework builders of reef structures worldwide, yet the genus has been challenging to study due to a lack of informative molecular markers. Here, we used ezRAD sequencing to reconstruct the complete mitochondrial genome of Porites fontanesii (GenBank accession number MG754069), a widespread coral species endemic to the Red Sea and Gulf of Aden. The gene arrangement of P. fontanesii did not differ from other Scleractinia and consisted of 18,658 bp, organized in 13 protein-coding genes, 2 rRNA genes, and 2 tRNA genes. This mitochondrial genome contributes essential data to work towards a better understanding of evolutionary relationships within Porites.

18.
Mitochondrial DNA B Resour ; 3(1): 286-287, 2018 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33474145

RESUMO

In this study, we sequenced the complete mitochondrial genome of Porites harrisoni using ezRAD and Illumina technology. Genome length consisted of 18,630 bp, with a base composition of 25.92% A, 13.28% T, 23.06% G, and 37.73% C. Consistent with other hard corals, P. harrisoni mitogenome was arranged in 13 protein-coding genes, 2 rRNA, and 2 tRNA genes. nad5 and cox1 contained embedded Group I Introns of 11,133 bp and 965 bp, respectively.

19.
Mitochondrial DNA B Resour ; 3(2): 611-612, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-33474261

RESUMO

We compare the complete mitochondrial genomes of Achatinella fulgens, A. mustelina, A. sowerbyana, Partulina redfieldi, and Perdicella helena, five species of Hawaiian tree snails across three genera. Mitogenomes ranged in length from 15,187 to 16,793 base pairs, with a base composition of A (36.4-37.4%); T (42.2-42.7%); C (8.8-9.2%); and G (11.3-11.8%). Similar with other pulmonates, these mitogenomes contain 13 protein-coding genes, two ribosomal RNA genes, and 22 transfer RNA genes, with the order conserved among genera. Our study suggests polyphyly in the current arrangement of the subfamily Achatinellinae, part of a spectacular radiation in the Hawaiian Islands.

20.
PeerJ ; 5: e3873, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29018611

RESUMO

Although the invasive azooxanthellate corals Tubastraea coccinea and T. tagusensis are spreading quickly and outcompeting native species in the Atlantic Ocean, there is little information regarding the genetic structure and path of introduction for these species. Here we present the first data on genetic diversity and clonal structure from these two species using a new set of microsatellite markers. High proportions of clones were observed, indicating that asexual reproduction has a major role in the local population dynamics and, therefore, represents one of the main reasons for the invasion success. Although no significant population structure was found, results suggest the occurrence of multiple invasions for T. coccinea and also that both species are being transported along the coast by vectors such as oil platforms and monobouys, spreading these invasive species. In addition to the description of novel microsatellite markers, this study sheds new light into the invasive process of Tubastraea.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...